4.8 Article

Regulation of the Arabidopsis anther transcriptome by DYT1 for pollen development

Journal

PLANT JOURNAL
Volume 72, Issue 4, Pages 612-624

Publisher

WILEY
DOI: 10.1111/j.1365-313X.2012.05104.x

Keywords

DYT1; anther development; tapetum; transcriptome; transcriptional regulation; binding site

Categories

Funding

  1. US Department of Energy [DE-FG02-02ER15332]
  2. Department of Biology Huck Institutes of the Life Sciences, Pennsylvania State University (University Park, PA)
  3. Fudan University (Shanghai, China)

Ask authors/readers for more resources

Several genes encoding transcription factors have been shown to be essential for male fertility in plants, suggesting that transcriptional regulation is a major mechanism controlling anther development in Arabidopsis. DYSFUNCTIONAL TAPETUM 1 (DYT1), a putative bHLH transcription factor, plays a critical role in regulating tapetum function and pollen development. Here, we compare the transcriptomes of young anthers of wild-type and the dyt1 mutant, demonstrating that DYT1 is upstream of at least 22 genes encoding transcription factors and regulates the expression of a large number of genes, including genes involved in specific metabolic pathways. We also show that DYT1 can bind to DNA in a sequence-specific manner in vitro, and induction of DYT1 activity in vivo activated the expression of the downstream transcription factor genes MYB35 and MS1. We generated DYT1SRDX transgenic plants whose fertility was dramatically reduced, implying that DYT1 probably acts as a transcriptional activator. Furthermore, we used yeast two-hybrid assays to show that DYT1 forms homodimers and heterodimers with other bHLH transcription factors. Our results demonstrate the important role of DYT1 in regulating anther transcriptome and function, and supporting normal pollen development.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.8
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available