4.8 Article

A member of the mitogen-activated protein 3-kinase family is involved in the regulation of plant vacuolar glucose uptake

Journal

PLANT JOURNAL
Volume 68, Issue 5, Pages 890-900

Publisher

WILEY
DOI: 10.1111/j.1365-313X.2011.04739.x

Keywords

glucose; vacuole; MAP 3-kinase; major facilitator superfamily; transport; Arabidopsis

Categories

Funding

  1. Deutsche Forschungsgemeinschaft [FOR1061, GE2195/1-1]
  2. Federal State of Rhineland-Palatinate (Landesschwerpunkt Membrantransport, Research Initiative Membrane Biology)

Ask authors/readers for more resources

Vacuolar solute accumulation is an important process during plant development, growth and stress responses. Although several vacuolar carriers have been identified recently, knowledge regarding the regulation of transport is still limited. Solute accumulation may be controlled by various factors, such as alterations in carrier abundance or activity. Phosphorylation via kinases is a well-known principle for activation or deactivation of proteins. Several phosphorylated proteins have been identified in the tonoplast proteome; however, kinases that catalyse the phosphorylation of tonoplast proteins are currently unknown. The tonoplast monosaccaride transporter from Arabidopsis (AtTMT1) and its homologue from barley have multiple phosphorylation sites in their extremely large loops. Here we demonstrate that the loop of AtTMT1 interacts with a mitogen-activated triple kinase-like protein kinase (VIK), that an aspartate-rich loop domain is required for effective interaction, and that the presence of VIK stimulates glucose import into isolated vacuoles. Furthermore, the phenotype of VIK loss-of-function plants strikingly resembles that of plants lacking AtTMT1/2. These data suggest that VIK-mediated phosphorylation of the AtTMT1 loop enhances carrier activity and consequently vacuolar sugar accumulation. As many phosphorylated proteins have been identified in the tonoplast, differential phosphorylation may be a general mechanism regulating vacuolar solute import.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.8
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available