4.8 Article

Xylem ionic relations and salinity tolerance in barley

Journal

PLANT JOURNAL
Volume 61, Issue 5, Pages 839-853

Publisher

WILEY
DOI: 10.1111/j.1365-313X.2009.04110.x

Keywords

salt stress; xylem sap; potassium; sodium; ion channels; membrane depolarization

Categories

Funding

  1. Australian Academy of Science
  2. Australian Research Council
  3. Grain Research and Development Corporation
  4. German Excellence Initiative [SRG 60-1]

Ask authors/readers for more resources

P>Control of ion loading into the xylem has been repeatedly named as a crucial factor determining plant salt tolerance. In this study we further investigate this issue by applying a range of biophysical [the microelectrode ion flux measurement (MIFE) technique for non-invasive ion flux measurements, the patch clamp technique, membrane potential measurements] and physiological (xylem sap and tissue nutrient analysis, photosynthetic characteristics, stomatal conductance) techniques to barley varieties contrasting in their salt tolerance. We report that restricting Na+ loading into the xylem is not essential for conferring salinity tolerance in barley, with tolerant varieties showing xylem Na+ concentrations at least as high as those of sensitive ones. At the same time, tolerant genotypes are capable of maintaining higher xylem K+/Na+ ratios and efficiently sequester the accumulated Na+ in leaves. The former is achieved by more efficient loading of K+ into the xylem. We argue that the observed increases in xylem K+ and Na+ concentrations in tolerant genotypes are required for efficient osmotic adjustment, needed to support leaf expansion growth. We also provide evidence that K+-permeable voltage-sensitive channels are involved in xylem loading and operate in a feedback manner to maintain a constant K+/Na+ ratio in the xylem sap.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.8
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available