4.8 Article

Arabidopsis DMR6 encodes a putative 2OG-Fe(II) oxygenase that is defense-associated but required for susceptibility to downy mildew

Journal

PLANT JOURNAL
Volume 54, Issue 5, Pages 785-793

Publisher

WILEY
DOI: 10.1111/j.1365-313X.2008.03427.x

Keywords

Arabidopsis thaliana; Hyaloperonospora parasitica; disease susceptibility; 2OG-Fe(II) oxygenase; negative regulator of plant defense; oxidoreductase

Categories

Ask authors/readers for more resources

The Arabidopsis mutant downy mildew resistant 6 (dmr6) carries a recessive mutation that results in the loss of susceptibility to Hyaloperonospora parasitica. Here we describe the map-based cloning of DMR6 (At5g24530), which was found to encode a 2-oxoglutarate (2OG)-Fe(II) oxygenase of unknown function. DMR6 transcription is locally induced during infections with both compatible and incompatible H. parasitica isolates. High DMR6 transcript levels were also observed in constitutive defense mutants and after treatment with salicylic acid analog BTH, suggesting that DMR6 has a role during plant defense. Expression analysis of dmr6 mutants, using DNA microarrays and quantitative PCR, showed the enhanced expression of a subset of defense-associated genes, including DMR6 itself, suggesting dmr6-mediated resistance results from the activation of plant defense responses. Alternatively, resistance could be caused by the accumulation of a toxic DMR6 substrate, or by the absence of a DMR6 metabolic product that is required for H. parasitica infection.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.8
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available