4.6 Article

A secondary phloic (bast) fibre-shy (bfs) mutant of dark jute (Corchorus olitorius L.) develops lignified fibre cells but is defective in cambial activity

Journal

PLANT GROWTH REGULATION
Volume 67, Issue 1, Pages 45-55

Publisher

SPRINGER
DOI: 10.1007/s10725-012-9660-z

Keywords

Bast fibre; Cambium function; Corchorus olitorius; Dark jute; Fibre cell bundle; Lignin; Mutant; Secondary phloic fibre

Categories

Ask authors/readers for more resources

Bast fibre development in jute (Corchorus spp.) is a complex process that involves the differentiation of secondary phloic fibres (SPF) from the cambium followed by lignification of the fibre wall. We have identified a unique radiation-induced bast fibre-shy mutant of dark jute (C. olitorius L.), which is concurrently defective in the differentiation of SPF and secondary xylem (wood) but develops lignified fibre cells. It displays the most unusual phenotype with stunted growth and abnormal leaf shape, matures earlier, yields significantly less bast fibres and wood, and produces poorer quality fibres than its parental wild-type. Cambial activities in the mutant and the normal type were monitored by estimating the fibre content that entails the total number of fibre cell bundles (FCBs) in an entire transversal section. The results show that a multi-fold reduction of bast fibre yield in the mutant is related to development-specific loss of cambium function along the length of the stem from to top to bottom. Since lignification of the fibre wall in the mutant is not only normal but also developmentally uniform, cambium function may be unrelated to the lignification process during bast fibre development. Lignin does not influence bast fibre strength and fineness. The architecture of the mostly triangular FCB wedges, which is governed by a balanced growth between radially elongating FCBs and tangentially expanding ray cells due to development-specific activation of the fusiform and ray initials of the cambium, conditions fibre fineness. Our study shows that mutation could specifically impair the cambial activity by rendering those initials that differentiate the SPF and secondary xylem nonfunctional.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available