4.6 Article

Anoxia tolerance and α-amylase activity in four rice cultivars

Journal

PLANT GROWTH REGULATION
Volume 55, Issue 1, Pages 35-41

Publisher

SPRINGER
DOI: 10.1007/s10725-008-9255-x

Keywords

alpha-amylase; anaerobiosis; anoxia tolerance; ethanolic fermentation; Oryza sativa; soluble sugar

Categories

Ask authors/readers for more resources

The relationship between anoxia tolerance and reserved carbohydrate catabolism was investigated in four rice (Oryza sativa L.) cultivars subjected to a 48-h anoxic stress. The coleoptile elongation of all cultivars was suppressed by anoxic stress, however, the elongation of cvs Koshihikari and Awa-akamai was much greater than that of cvs Touzoumochi and Asahimochi. The anoxic coleoptiles of cvs Koshihikari and Awa-akamai contained about 2-fold as much ATP as those of cvs Touzoumochi and Asahimochi. Ethanol production in the anoxic coleoptiles of cvs Koshihikari and Awa-akamai was about 2-fold as much as that of cvs Touzoumochi and Asahimochi, which suggests that ethanolic fermentation is probably more active in cvs Koshihikari and Awa-akamai than in cvs Asahimochi and Touzoumochi. Activity of alpha-amylase, which catabolizes starch to soluble sugars, in endosperms of cvs Koshihikari and Awa-akamai was about 2-fold that of cvs Touzoumochi and Asahimochi, and soluble sugar concentration in the coleoptiles of cvs Koshihikari and Awa-akamai was about 3-fold greater than that of cvs Touzoumochi and Asahimochi. Soluble sugar concentration and ethanol production rate in the coleoptiles of rice seedlings were correlated well with alpha-amylase activity in their endosperms, which were also correlated well with anoxia tolerance with respect to the coleoptile elongation and ATP concentration in the coleoptiles. These results suggest that the ability to degrade starch to soluble sugar by alpha-amylase in endosperm may be important for the anoxia tolerance in rice coleoptiles and it may serve to distinguish the anoxia tolerance of rice coleoptiles.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available