4.6 Article

Phenolic Profile and Antioxidant Capacity of Chickpeas (Cicer arietinum L.) as Affected by a Dehydration Process

Journal

PLANT FOODS FOR HUMAN NUTRITION
Volume 66, Issue 2, Pages 187-195

Publisher

SPRINGER
DOI: 10.1007/s11130-011-0230-8

Keywords

Antioxidant capacity; Bioactive phenolic compounds; Chickpeas; Dehydration process; Legume flours

Funding

  1. Program Ramon y Cajal

Ask authors/readers for more resources

This study presents the effects of soaking, cooking and industrial dehydration on the phenolic profile, and antioxidant capacity in two chickpea varieties (Sinaloa and Castellano). Chromatographic analysis identified a total of 24 phenolic components, being isoflavones the main phenolics in raw and processed Sinaloa and Castellano flours. The impact of the industrial dehydration was different depending on the chickpea variety. Although Castellano chickpea exhibited the highest levels of phenolic compounds (103.1 mu g/g), significant reductions were observed during processing; in contrast, the dehydration did not cause any further effects in Sinaloa flours. Interestingly, Sinaloa variety showed high thermal stability of isoflavones during processing. As expected, the levels of antioxidant capacity were in accordance with the behavior of phenolic compounds exhibiting noticeable reductions in Castellano chickpea and not relevant changes in Sinaloa chickpea. Thus, the significant occurrence of bioactive phenolic compounds along with the relevant antioxidant capacities of dehydrated chickpea flours make them to be considered functional ingredients for their beneficial health effects, especially in case of Sinaloa.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available