4.7 Article

Low melting point agarose beads as a standard method for plantlet regeneration from protoplasts within the Cichorium genus

Journal

PLANT CELL REPORTS
Volume 31, Issue 12, Pages 2261-2269

Publisher

SPRINGER
DOI: 10.1007/s00299-012-1335-8

Keywords

Cichorium intybus; Cichorium endivia; Low melting point agarose beads; Plantlet regeneration; Protoplasts

Categories

Funding

  1. COSUCRA-Groupe Warcoing S.A. Division Chicoline

Ask authors/readers for more resources

A standard method has been developed with which we are able to fully regenerate protoplasts of different Cichorium species. For the first time, endive protoplasts have been regenerated into plantlets. Protoplast regeneration is essential for somatic hybridizations. In this study, a standard method for plantlet regeneration from Cichorium protoplasts was developed. We evaluated the effect of the low melting point agarose (LMPA) bead technique on the regeneration capacity of protoplasts of seven C. intybus and four C. endivia genotypes. The LMPA bead technique was more efficient than culture in liquid or solid medium and allowed us to obtain plating efficiencies up to 4.9 % in C. intybus genotypes and efficiencies of up to 0.7 % in C. endivia genotypes. Moreover, the LMPA bead technique offers great advantages over liquid and solid culture systems: the media can be readily refreshed, protoplasts can be monitored separately, and microcalli can easily be removed from the beads. This increased efficiency was observed for all of the 11 Cichorium genotypes tested. Shoot formation was induced more efficiently when using 0.5 mg l(-1) indole-3-acetic acid-enriched medium (up to 87.5 % of the protoplast-derived calli started shoot development) compared to 1-naphthaleneacetic acid-enriched medium. The LMPA bead technique optimized in this study enabled for the first time the full plantlet regeneration from protoplasts of C. endivia genotypes and increased the protoplast regenerating ability in other Cichorium species. This fine-tuned LMPA bead technique can therefore be applied for protoplast regeneration after protoplast fusions of the genus Cichorium.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available