4.7 Article

MpAsr encodes an intrinsically unstructured protein and enhances osmotic tolerance in transgenic Arabidopsis

Journal

PLANT CELL REPORTS
Volume 30, Issue 7, Pages 1219-1230

Publisher

SPRINGER
DOI: 10.1007/s00299-011-1030-1

Keywords

Intrinsically unstructured protein; MpASR protein; Osmoprotectant; Osmotic stress

Categories

Funding

  1. National Natural Science Foundation of China [30771235, 30800600]
  2. Natural Science Foundation of Guangdong Provincial, China [7003637]

Ask authors/readers for more resources

Abscisic acid-, stress- and ripening (ASR) -induced proteins are plant-specific proteins whose expression is up-regulated under abiotic stresses or during fruit ripening. In this study, we characterized an ASR protein from plantain to explore its physiological roles under osmotic stress. The expression pattern of MpAsr gene shows that MpAsr gene changed little at the mRNA level, while the MpASR protein accumulates under osmotic treatment. Through bioinformatic-based predictions, circular dichroism spectrometry, and proteolysis and heat-stability assays, we determined that the MpASR protein is an intrinsically unstructured protein in solution. We demonstrated that the hydrophilic MpASR protein could protect l-lactate dehydrogenase (l-LDH) from cold-induced aggregation. Furthermore, heterologous expression of MpAsr in Escherichia coli and Arabidopsis enhanced the tolerance of transformants to osmotic stress. Transgenic 35S::MpAsr Arabidopsis seeds had a higher germination frequency than wild-type seeds under unfavorable conditions. At the physiological level, 35S::MpAsr Arabidopsis showed increased soluble sugars and decreased cell membrane damage under osmotic stress. Thus, our results suggest that the MpASR protein may act as an osmoprotectant and water-retaining molecule to help cell adjustment to water deficit caused by osmotic stress.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available