4.7 Article

Histone modification and signalling cascade of the dormancy-associated MADS-box gene, PpMADS13-1, in Japanese pear (Pyrus pyrifolia) during endodormancy

Journal

PLANT CELL AND ENVIRONMENT
Volume 38, Issue 6, Pages 1157-1166

Publisher

WILEY-BLACKWELL
DOI: 10.1111/pce.12469

Keywords

Japanese pear (Pyrus pyrifolia Nakai); C-repeat binding factor (CBF) gene; FLOWERING LOCUS T (FT) gene

Categories

Funding

  1. Japan Society for the Promotion of Science (JSPS) [25292027]

Ask authors/readers for more resources

Dormancy-associatedMADS-box (DAM) genes play an important role in endodormancy phase transition. We investigated histone modification in the DAM homolog (PpMADS13-1) from Japanese pear, via chromatin immunoprecipitation-quantitative PCR, to understand the mechanism behind the reduced expression of the PpMADS13-1 gene towards endodormancy release. Our results indicated that the reduction in the active histone mark by trimethylation of the histone H3 tail at lysine 4 contributed to the reduction of PpMADS13-1 expression towards endodormancy release. In contrast, the inactive histone mark by trimethylation of the histone H3 tail at lysine 27 in PpMADS13-1 locus was quite low, and these levels were more similar to a negative control [normal mouse immunoglobulin G (IgG)] than to a positive control (AGAMOUS) in endodormancy phase transition. The loss of histone variant H2A.Z also coincided with the down-regulation of PpMADS13-1. Subsequently, we investigated the PpMADS13-1 signalling cascade and found that PpCBF2, a pear C-repeated binding factor, regulated PpMADS13-1 expression via interaction of PpCBF2 with the 5-upstream region of PpMADS13-1 by transient reporter assay. Furthermore, transient reporter assay confirmed no interaction between the PpMADS13-1 protein and the pear FLOWERING LOCUS T genes. Taken together, our results enhance understanding of the molecular mechanisms underlying endodormancy phase transition in Japanese pear.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available