4.7 Article

The dynamic pipeline: hydraulic capacitance and xylem hydraulic safety in four tall conifer species

Journal

PLANT CELL AND ENVIRONMENT
Volume 37, Issue 5, Pages 1171-1183

Publisher

WILEY
DOI: 10.1111/pce.12225

Keywords

hydraulic conductance; capacitance; conifers; safety margins; vulnerability curves

Categories

Funding

  1. NSF [IBN 09-19871]

Ask authors/readers for more resources

Recent work has suggested that plants differ in their relative reliance on structural avoidance of embolism versus maintenance of the xylem water column through dynamic traits such as capacitance, but we still know little about how and why species differ along this continuum. It is even less clear how or if different parts of a plant vary along this spectrum. Here we examined how traits such as hydraulic conductivity or conductance, xylem vulnerability curves, and capacitance differ in trunks, large- and small-diameter branches, and foliated shoots of four species of co-occurring conifers. We found striking similarities among species in most traits, but large differences among plant parts. Vulnerability to embolism was high in shoots, low in small- and large-diameter branches, and high again in the trunks. Safety margins, defined as the pressure causing 50% loss of hydraulic conductivity or conductance minus the midday water potential, were large in small-diameter branches, small in trunks and negative in shoots. Sapwood capacitance increased with stem diameter, and was correlated with stem vulnerability, wood density and latewood proportion. Capacitive release of water is a dynamic aspect of plant hydraulics that is integral to maintenance of long-distance water transport.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available