4.7 Article

Transpiration from shoots triggers diurnal changes in root aquaporin expression

Journal

PLANT CELL AND ENVIRONMENT
Volume 34, Issue 7, Pages 1150-1163

Publisher

WILEY
DOI: 10.1111/j.1365-3040.2011.02313.x

Keywords

rice; root hydraulic conductivity; transpirational demand

Categories

Funding

  1. KAKENHI [21780235]
  2. Program for Promotion of Basic and Applied Researches for Innovations in Bio-oriented Industry (BRAIN)
  3. Grants-in-Aid for Scientific Research [21780235] Funding Source: KAKEN

Ask authors/readers for more resources

Root hydraulic conductivity (Lp(r)) and aquaporin amounts change diurnally. Previously, these changes were considered to be spontaneously driven by a circadian rhythm. Here, we evaluated the new hypothesis that diurnal changes could be triggered and enhanced by transpirational demand from shoots. When rice plants were grown under a 12 h light/12 h dark regime, Lp(r) was low in the dark and high in the light period. Root aquaporin mRNA levels also changed diurnally, but the amplitudes differed among aquaporin isoforms. Aquaporins, such as OsPIP2;1, showed moderate changes, whereas root-specific aquaporins, such as OsPIP2;5, showed temporal and dramatic induction around 2 h after light initiation. When darkness was extended for 12 h after the usual dark period, no such induction was observed. Furthermore, plants under 100% relative humidity (RH) showed no induction even in the presence of light. These results suggest that transpirational demand triggers a dramatic increase in gene expressions such as OsPIP2;5. Immunocytochemistry showed that OsPIP2;5 accumulated on the proximal end of the endodermis and of the cell surface around xylem. The strong induction by transpirational demand and the polar localization suggest that OsPIP2;5 contributes to fine adjustment of radial water transport in roots to sustain high Lp(r) during the day.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available