4.7 Article

Distinct responses of the mitochondrial respiratory chain to long- and short-term high-light environments in Arabidopsis thaliana

Journal

PLANT CELL AND ENVIRONMENT
Volume 34, Issue 4, Pages 618-628

Publisher

WILEY
DOI: 10.1111/j.1365-3040.2010.02267.x

Keywords

alternative oxidase; cytochrome pathway; light acclimation

Categories

Funding

  1. Ministry of Education, Science, Sports and Culture [16207002, 19039009, 30300560]
  2. Japan Society for the Promotion of Science
  3. Grants-in-Aid for Scientific Research [19039009, 23370015, 21580187, 16207002] Funding Source: KAKEN

Ask authors/readers for more resources

In order to ensure the cooperative function with the photosynthetic system, the mitochondrial respiratory chain needs to flexibly acclimate to a fluctuating light environment. The non-phosphorylating alternative oxidase (AOX) is a notable respiratory component that may support a cellular redox homeostasis under high-light (HL) conditions. Here we report the distinct acclimatory manner of the respiratory chain to long- and short-term HL conditions and the crucial function of AOX in Arabidopsis thaliana leaves. Plants grown under HL conditions (HL plants) possessed a larger ubiquinone (UQ) pool and a higher amount of cytochrome c oxidase than plants grown under low light conditions (LL plants). These responses in HL plants may be functional for efficient ATP production and sustain the fast plant growth. When LL plants were exposed to short-term HL stress (sHL), the UQ reduction level was transiently elevated. In the wild-type plant, the UQ pool was re-oxidized concomitantly with an up-regulation of AOX. On the other hand, the UQ reduction level of the AOX-deficient aox1a mutant remained high. Furthermore, the plastoquinone pool was also more reduced in the aox1a mutant under such conditions. These results suggest that AOX plays an important role in rapid acclimation of the respiratory chain to sHL, which may support efficient photosynthetic performance.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available