4.7 Article

Proteomic plasticity of two Eucalyptus genotypes under contrasted water regimes in the field

Journal

PLANT CELL AND ENVIRONMENT
Volume 35, Issue 4, Pages 790-805

Publisher

WILEY
DOI: 10.1111/j.1365-3040.2011.02452.x

Keywords

adaptation; proteome; molecular plasticity; two-dimensional gel electrophoresis (2-DE); water deficit

Categories

Funding

  1. INRA
  2. ANR
  3. CIRAD [ATP 0701]
  4. Conseil Regional d'Aquitaine [20030304002FA, 20040305003FA]
  5. European Union FEDER [32973]

Ask authors/readers for more resources

Water deficit affects tree growth and limits wood production. In an attempt to identify the molecular triggers of adaptation mechanisms to water deficit in Eucalyptus, we investigated protein expression patterns of two ecophysiologically contrasted Eucalyptus genotypes. They were grown in the field in either natural conditions or irrigated for 7 weeks during the dry season in the Republic of Congo. At the phenotypic level, genotype (G), treatment (T) and/or G x T interaction effects were observed for above- and below-ground biomass-related traits. At the molecular level, changes in protein abundance were recorded in leaves (acidic pH 47, and basic pH 711, proteomes) and stems (acidic proteome) using two-dimensional gel electrophoresis (2-DE). One third of the detected protein spots displayed significant G, T and/or G x T effects, and 158 of them were identified by tandem mass spectrometry (LC-MS/MS) analysis. Thus, several proteins whose molecular plasticity was genetically controlled (i.e. G x T effect) were revealed, highlighting adaptive mechanisms to water deficit specific to each genotype, namely cell wall modification, cell detoxification and osmoregulation. Transcript abundances corresponding to G x T proteins were also investigated by quantitative RT-PCR. These proteins represent relevant targets to improve drought resistance in this ecologically and economically important forest tree genus.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available