4.7 Article

Symbiosis between Nicotiana attenuata and Glomus intraradices:: ethylene plays a role, jasmonic acid does not

Journal

PLANT CELL AND ENVIRONMENT
Volume 31, Issue 9, Pages 1203-1213

Publisher

WILEY-BLACKWELL
DOI: 10.1111/j.1365-3040.2008.01827.x

Keywords

arbuscular mycorrhiza; etr1; phytohormones; signalling; salicylic acid

Categories

Funding

  1. Max Planck Society

Ask authors/readers for more resources

Phytohormones are thought to mediate plant-arbuscular mycorrhizal (AM) interactions. To explore the role of phytohormones in the interaction between Nicotiana attenuata and Glomus intraradices, we analysed levels of jasmonic acid (JA) and its amino acid conjugate JA-isoleucine/JA-leucine (JA-Ile), salicylic acid (SA) and ethylene in either infected or non-infected N. attenuata wild-type (WT) plants growing in soils that mimic the nutrient supply rates found in the plant's native environment. Under these conditions, the infection decreases plant growth and reproductive performance. Levels of JA, JA-Ile and SA did not change upon infection, but ethylene release was slightly decreased. Transgenic N. attenuata plants defective in JA signalling (aslox3 and ircoi1) did not differ significantly in growth or reproductive performance compared with infected WT. Furthermore, no difference in infection rates could be observed. Transgenic plants unable to produce (iraco) or perceive (etr1) ethylene showed significantly larger decreases in growth and number of seed capsules produced between infected and non-infected plants compared with WT plants. We conclude that ethylene, rather than JA, signalling plays a role in the interaction between N. attenuata and AM, from which the plant does not realize a fitness benefit.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available