4.8 Article

ABD1 Is an Arabidopsis DCAF Substrate Receptor for CUL4-DDB1-Based E3 Ligases That Acts as a Negative Regulator of Abscisic Acid Signaling

Journal

PLANT CELL
Volume 26, Issue 2, Pages 695-711

Publisher

OXFORD UNIV PRESS INC
DOI: 10.1105/tpc.113.119974

Keywords

-

Funding

  1. National Institutes of Health [GM47850]
  2. National Science Foundation [MCB0929100]
  3. Next-Generation BioGreen 21 Program [PJ00901002]
  4. National Academy of Agricultural Science agenda program [PJ00859802]
  5. Rural Development Administration, Republic of Korea
  6. Basic Science Research Program through the National Research Foundation of Korea
  7. Ministry of Education, Science, and Technology [NRF-2012R1A1A1001564]
  8. iPET (Korea Institute of Planning and Evaluation for Technology in Food, Agriculture, Forestry, and Fisheries), Ministry of Agriculture, Food, and Rural Affairs [112030-1]

Ask authors/readers for more resources

Members of the DDB1-CUL4-associated factors (DCAFs) family directly bind to DAMAGED DNA BINDING PROTEIN1 (DDB1) and function as the substrate receptors in CULLIN4-based E3 (CUL4) ubiquitin ligases, which regulate the selective ubiquitination of proteins. Here, we describe a DCAF protein, ABD1 (for ABA-hypersensitive DCAF1), that negatively regulates abscisic acid (ABA) signaling in Arabidopsis thaliana. ABD1 interacts with DDB1 in vitro and in vivo, indicating that it likely functions as a CUL4 E3 ligase substrate receptor. ABD1 expression is induced by ABA, and mutations in ABD1 result in ABA- and NaCl-hypersensitive phenotypes. Loss of ABD1 leads to hyperinduction of ABA-responsive genes and higher accumulation of the ABA-responsive transcription factor ABA INSENSITIVE5 (ABI5), hypersensitivity to ABA during seed germination and seedling growth, enhanced stomatal closure, reduced water loss, and, ultimately, increased drought tolerance. ABD1 directly interacts with ABI5 in yeast two-hybrid assays and associates with ABI5 in vivo by coimmunoprecipitation, and the interaction was found in the nucleus by bimolecular fluorescence complementation. Furthermore, loss of ABD1 results in a retardation of ABI5 degradation by the 26S proteasome. Taken together, these data suggest that the DCAF-CUL4 E3 ubiquitin ligase assembled with ABD1 is a negative regulator of ABA responses by directly binding to and affecting the stability of ABI5 in the nucleus.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.8
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available