4.8 Article

Functional Network Construction in Arabidopsis Using Rule-Based Machine Learning on Large-Scale Data Sets

Journal

PLANT CELL
Volume 23, Issue 9, Pages 3101-3116

Publisher

AMER SOC PLANT BIOLOGISTS
DOI: 10.1105/tpc.111.088153

Keywords

-

Funding

  1. Marie Curie International Incoming Fellowship
  2. University of Nottingham
  3. Biotechnology and Biological Sciences Research Council [BBG02488X1]
  4. UK Engineering and Physical Sciences Research Council [EP/H016597/1]
  5. BBSRC [BB/G02488X/1] Funding Source: UKRI
  6. EPSRC [EP/H016597/1] Funding Source: UKRI
  7. Biotechnology and Biological Sciences Research Council [BB/G02488X/1] Funding Source: researchfish
  8. Engineering and Physical Sciences Research Council [EP/H016597/1] Funding Source: researchfish

Ask authors/readers for more resources

The meta-analysis of large-scale postgenomics data sets within public databases promises to provide important novel biological knowledge. Statistical approaches including correlation analyses in coexpression studies of gene expression have emerged as tools to elucidate gene function using these data sets. Here, we present a powerful and novel alternative methodology to computationally identify functional relationships between genes from microarray data sets using rule-based machine learning. This approach, termed coprediction, is based on the collective ability of groups of genes co-occurring within rules to accurately predict the developmental outcome of a biological system. We demonstrate the utility of coprediction as a powerful analytical tool using publicly available microarray data generated exclusively from Arabidopsis thaliana seeds to compute a functional gene interaction network, termed Seed Co-Prediction Network (SCoPNet). SCoPNet predicts functional associations between genes acting in the same developmental and signal transduction pathways irrespective of the similarity in their respective gene expression patterns. Using SCoPNet, we identified four novel regulators of seed germination (ALTERED SEED GERMINATION5, 6, 7, and 8), and predicted interactions at the level of transcript abundance between these novel and previously described factors influencing Arabidopsis seed germination. An online Web tool to query SCoPNet has been developed as a community resource to dissect seed biology and is available at http://www.vseed.nottingham.ac.uk/.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.8
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available