4.8 Article

The Interconversion of UDP-Arabinopyranose and UDP-Arabinofuranose Is Indispensable for Plant Development in Arabidopsis

Journal

PLANT CELL
Volume 23, Issue 4, Pages 1373-1390

Publisher

OXFORD UNIV PRESS INC
DOI: 10.1105/tpc.111.083931

Keywords

-

Funding

  1. U.S. Department of Energy, Office of Science, Office of Biological and Environmental Research [DE-AC02-05CH11231]

Ask authors/readers for more resources

L-Ara, an important constituent of plant cell walls, is found predominantly in the furanose rather than in the thermodynamically more stable pyranose form. Nucleotide sugar mutases have been demonstrated to interconvert UDP-L-arabinopyranose (UDP-Arap) and UDP-L-arabinofuranose (UDP-Araf) in rice (Oryza sativa). These enzymes belong to a small gene family encoding the previously named Reversibly Glycosylated Proteins (RGPs). RGPs are plant-specific cytosolic proteins that tend to associate with the endomembrane system. In Arabidopsis thaliana, the RGP protein family consists of five closely related members. We characterized all five RGPs regarding their expression pattern and subcellular localizations in transgenic Arabidopsis plants. Enzymatic activity assays of recombinant proteins expressed in Escherichia coli identified three of the Arabidopsis RGP protein family members as UDP-L-Ara mutases that catalyze the formation of UDP-Araf from UDP-Arap. Coimmunoprecipitation and subsequent liquid chromatography-electrospray ionization-tandem mass spectrometry analysis revealed a distinct interaction network between RGPs in different Arabidopsis organs. Examination of cell wall polysaccharide preparations from RGP1 and RGP2 knockout mutants showed a significant reduction in total L-Ara content (12-31%) compared with wild-type plants. Concomitant downregulation of RGP1 and RGP2 expression results in plants almost completely deficient in cell wall-derived L-Ara and exhibiting severe developmental defects.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.8
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available