4.8 Article

The Myosin Motor Domain of Fungal Chitin Synthase V Is Dispensable for Vesicle Motility but Required for Virulence of the Maize Pathogen Ustilago maydis

Journal

PLANT CELL
Volume 22, Issue 7, Pages 2476-2494

Publisher

AMER SOC PLANT BIOLOGISTS
DOI: 10.1105/tpc.110.075028

Keywords

-

Funding

  1. Deutsche Forschungsgemeinshaft Graduate School [1216]
  2. Biotechnology and Biological Science Research Council [BB/G00465X/1]
  3. Max-Planck Institute for Terrestrial Microbiology in Marburg
  4. BBSRC [BB/G00465X/1] Funding Source: UKRI
  5. Biotechnology and Biological Sciences Research Council [BB/G00465X/1] Funding Source: researchfish

Ask authors/readers for more resources

Class V chitin synthases are fungal virulence factors required for plant infection. They consist of a myosin motor domain fused to a membrane-spanning chitin synthase region that participates in fungal cell wall formation. The function of the motor domain is unknown, but it might deliver the myosin chitin synthase-attached vesicles to the growth region. Here, we analyze the importance of both domains in Mcs1, the chitin synthase V of the maize smut fungus Ustilago maydis. By quantitative analysis of disease symptoms, tissue colonization, and single-cell morphogenic parameters, we demonstrate that both domains are required for fungal virulence. Fungi carrying mutations in the chitin synthase domain are rapidly recognized and killed by the plant, whereas fungi carrying a deletion of the motor domain show alterations in cell wall composition but can invade host tissue and cause a moderate plant response. We also show that Mcs1-bound vesicles exhibit long-range movement for up to 20 mu m at a velocity of similar to 1.75 mu m/s. Apical Mcs1 localization depends on F-actin and the motor domain, whereas Mcs1 motility requires microtubules and persists when the Mcs1 motor domain is deleted. Our results suggest that the myosin motor domain of ChsV supports exocytosis but not long-range delivery of transport vesicles.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.8
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available