4.8 Article

Photosynthetic Redox Imbalance Governs Leaf Sectoring in the Arabidopsis thaliana Variegation Mutants immutans, spotty, var1, and var2

Journal

PLANT CELL
Volume 21, Issue 11, Pages 3473-3492

Publisher

AMER SOC PLANT BIOLOGISTS
DOI: 10.1105/tpc.108.062752

Keywords

-

Funding

  1. Natural Sciences and Engineering Research Council of Canada
  2. U.S. Department of Energy [DF-FG02-94ER20147]
  3. NSERC postgraduate scholarship
  4. NSERC University Summer Research Assistantship

Ask authors/readers for more resources

We hypothesized that chloroplast energy imbalance sensed through alterations in the redox state of the photosynthetic electron transport chain, measured as excitation pressure, governs the extent of variegation in the immutans mutant of Arabidopsis thaliana. To test this hypothesis, we developed a nondestructive imaging technique and used it to quantify the extent of variegation in vivo as a function of growth temperature and irradiance. The extent of variegation was positively correlated (R-2 = 0.750) with an increase in excitation pressure irrespective of whether high light, low temperature, or continuous illumination was used to induce increased excitation pressure. Similar trends were observed with the variegated mutants spotty, var1, and var2. Measurements of greening of etiolated wild-type and immutans cotyledons indicated that the absence of IMMUTANS increased excitation pressure twofold during the first 6 to 12 h of greening, which led to impaired biogenesis of thylakoid membranes. In contrast with IMMUTANS, the expression of its mitochondrial analog, AOX1a, was transiently upregulated in the wild type but permanently upregulated in immutans, indicating that the effects of excitation pressure during greening were also detectable in mitochondria. We conclude that mutations involving components of the photosynthetic electron transport chain, such as those present in immutans, spotty, var1, and var2, predispose Arabidopsis chloroplasts to photooxidation under high excitation pressure, resulting in the variegated phenotype.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.8
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available