4.8 Article

Function of Nicotiana tabacum aquaporins as chloroplast gas pores challenges the concept of membrane CO2 permeability

Journal

PLANT CELL
Volume 20, Issue 3, Pages 648-657

Publisher

AMER SOC PLANT BIOLOGISTS
DOI: 10.1105/tpc.107.054023

Keywords

-

Ask authors/readers for more resources

Photosynthesis is often limited by the rate of CO2 diffusion from the atmosphere to the chloroplast. The primary resistances for CO2 diffusion are thought to be at the stomata and at photosynthesizing cells via a combination resulting from resistances of aqueous solution as well as the plasma membrane and both outer and inner chloroplast membranes. In contrast with stomatal resistance, the resistance of biological membranes to gas transport is not widely recognized as a limiting factor for metabolic function. We show that the tobacco (Nicotiana tabacum) plasma membrane and inner chloroplast membranes contain the aquaporin Nt AQP1. RNA interference-mediated decreases in Nt AQP1 expression lowered the CO2 permeability of the inner chloroplast membrane. In vivo data show that the reduced amount of Nt AQP1 caused a 20% change in CO2 conductance within leaves. Our discovery of CO2 aquaporin function in the chloroplast membrane opens new opportunities for mechanistic examination of leaf internal CO2 conductance regulation.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.8
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available