4.3 Article

Factors influencing regeneration and Agrobacterium tumefaciens-mediated transformation of common bean (Phaseolus vulgaris L.)

Journal

PLANT BIOTECHNOLOGY REPORTS
Volume 7, Issue 1, Pages 59-70

Publisher

SPRINGER
DOI: 10.1007/s11816-012-0237-0

Keywords

Common bean; Plant regeneration; Stable transformation; Transgenic common bean; Transient transformation

Funding

  1. USDA-AFRI
  2. PULSE CRSP
  3. MSU Project GREEEN (Generating Research and Extension to Meet Economic and Environmental Needs)

Ask authors/readers for more resources

A systematic study was carried out to optimize regeneration and Agrobacterium tumefaciens-mediated transformation of four common bean (Phaseolus vulgaris L.) cultivars; Red Hawk, Matterhorn, Merlot, and Zorro, representing red kidney, great northern, small red, and black bean commercial classes, respectively. Regeneration capacity of leaf explants, stem sections, and embryo axes were evaluated on 30 media each containing Murashige and Skoog (MS) medium and different combinations of plant growth regulators. For stem sections and leaf explants, none of the media enabled plant regeneration from any of the four cultivars tested, indicating the recalcitrance of bean regeneration from these tissues. In contrast, several media enabled multiple shoot production from embryo axis explants, although optimal regeneration media was genotype-dependent. Under optimal regeneration conditions, multiple shoots, 2.3-10.8 on average for each embryogenic explant, were induced from embryo axis explants at frequencies of 93 % for 'Merlot', 80 % for 'Matterhorn', 73 % for 'Red Hawk', and 67 % for 'Zorro'. Transient expression studies monitored by an intron-interrupted gusA on explants transformed with A. tumefaciens strains GV3101, LBA4404, and EHA105 indicated that all three A. tumefaciens strains tested were efficient in gene delivery. Gene delivery depended on parameters including strain of A. tumefaciens, co-cultivation time, explant type, and bean genotype. Agroinfiltration also enhanced gene delivery. Kanamycin-resistant and GUS-positive calluses were induced from leaf, stem, and embryo axis explants. Chimeric transformants were obtained from embryo axis explants and showed partial GUS-staining. Lack of efficient regeneration from non-meristem containing tissues is the main limitation for stable transformation of common bean.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.3
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available