4.7 Article

The expression of a recombinant glycolate dehydrogenase polyprotein in potato (Solanum tuberosum) plastids strongly enhances photosynthesis and tuber yield

Journal

PLANT BIOTECHNOLOGY JOURNAL
Volume 12, Issue 6, Pages 734-742

Publisher

WILEY
DOI: 10.1111/pbi.12178

Keywords

biomass; carbon metabolism; photorespiration; transgenic plants; tuber size

Funding

  1. BMBF-GABI [FKZ 0315038C]

Ask authors/readers for more resources

We have increased the productivity and yield of potato (Solanum tuberosum) by developing a novel method to enhance photosynthetic carbon fixation based on expression of a polyprotein (DEFp) comprising all three subunits (D, E and F) of Escherichia coli glycolate dehydrogenase (GlcDH). The engineered polyprotein retained the functionality of the native GlcDH complex when expressed in E. coli and was able to complement mutants deficient for the D, E and F subunits. Transgenic plants accumulated DEFp in the plastids, and the recombinant protein was active in planta, reducing photorespiration and improving CO2 uptake with a significant impact on carbon metabolism. Transgenic lines with the highest DEFp levels and GlcDH activity produced significantly higher levels of glucose (5.8-fold), fructose (3.8-fold), sucrose (1.6-fold) and transitory starch (threefold), resulting in a substantial increase in shoot and leaf biomass. The higher carbohydrate levels produced in potato leaves were utilized by the sink capacity of the tubers, increasing the tuber yield by 2.3-fold. This novel approach therefore has the potential to increase the biomass and yield of diverse crops.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available