4.7 Article

Metabolic engineering and profiling of rice with increased lysine

Journal

PLANT BIOTECHNOLOGY JOURNAL
Volume 11, Issue 4, Pages 490-501

Publisher

WILEY
DOI: 10.1111/pbi.12037

Keywords

lysine; biosynthesis; catabolism; metabolomics; rice (Oryza sativa L; )

Funding

  1. Bill and Melinda Gates Foundation (Grand Challenges in Global Health initiative, USA)
  2. UGC of the HKSAR [AoE/B-07/99]
  3. State Key Laboratory of Agrobiotechnology (CUHK)
  4. Ministry of Science and Technology [2012AA10A302-7, 2011ZX08001-006]
  5. Lee Hysan Foundation
  6. K.L. Lo Foundation
  7. Jiangsu Natural Science Foundation of China [BK2012010]

Ask authors/readers for more resources

Lysine (Lys) is the first limiting essential amino acid in rice, a stable food for half of the world population. Efforts, including genetic engineering, have not achieved a desirable level of Lys in rice. Here, we genetically engineered rice to increase Lys levels by expressing bacterial lysine feedback-insensitive aspartate kinase (AK) and dihydrodipicolinate synthase (DHPS) to enhance Lys biosynthesis; through RNA interference of rice lysine ketoglutaric acid reductase/saccharopine dehydropine dehydrogenase (LKR/SDH) to down-regulate its catabolism; and by combined expression of AK and DHPS and interference of LKR/SDH to achieve both metabolic effects. In these transgenic plants, free Lys levels increased up to similar to 12-fold in leaves and similar to 60-fold in seeds, substantially greater than the 2.5-fold increase in transgenic rice seeds reported by the only previous related study. To better understand the metabolic regulation of Lys accumulation in rice, metabolomic methods were employed to analyse the changes in metabolites of the Lys biosynthesis and catabolism pathways in leaves and seeds at different stages. Free Lys accumulation was mainly regulated by its biosynthesis in leaves and to a greater extent by catabolism in seeds. The transgenic plants did not show observable changes in plant growth and seed germination nor large changes in levels of asparagine (Asn) and glutamine (Gln) in leaves, which are the major amino acids transported into seeds. Although Lys was highly accumulated in leaves of certain transgenic lines, a corresponding higher Lys accumulation was not observed in seeds, suggesting that free Lys transport from leaves into seeds did not occur.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available