4.7 Review

The chloroplast transformation toolbox: selectable markers and marker removal

Journal

PLANT BIOTECHNOLOGY JOURNAL
Volume 9, Issue 5, Pages 540-553

Publisher

WILEY
DOI: 10.1111/j.1467-7652.2011.00604.x

Keywords

plastid transformation; marker-free; aadA; aphA-6; Chlamydomonas reinhardtii; Nicotiana tabacum

Funding

  1. FP7 KBBE 2009-3 Sunbiopath [GA 245070]
  2. Swiss NRP59 program (Benefits and Risks of the Deliberate Release of Genetically Modified Plants)
  3. Swiss National Science Foundation [3100AO-117712]
  4. Biotechnology and Biological Sciences Research Council [BB/E020445/1]
  5. BBSRC [BB/I011552/1, BB/E020445/1] Funding Source: UKRI
  6. Biotechnology and Biological Sciences Research Council [BB/E020445/1, BB/I011552/1] Funding Source: researchfish

Ask authors/readers for more resources

P>Plastid transformation is widely used in basic research and for biotechnological applications. Initially developed in Chlamydomonas and tobacco, it is now feasible in a broad range of species. Selection of transgenic lines where all copies of the polyploid plastid genome are transformed requires efficient markers. A number of traits have been used for selection such as photoautotrophy, resistance to antibiotics and tolerance to herbicides or to other metabolic inhibitors. Restoration of photosynthesis is an effective primary selection method in Chlamydomonas but can only serve as a screening tool in flowering plants. The most successful and widely used markers are derived from bacterial genes that inactivate antibiotics, such as aadA that confers resistance to spectinomycin and streptomycin. For many applications, the presence of a selectable marker that confers antibiotic resistance is not desirable. Efficient marker removal methods are a major attraction of the plastid engineering tool kit. They exploit the homologous recombination and segregation pathways acting on chloroplast genomes and are based on direct repeats, transient co-integration or co-transformation and segregation of trait and marker genes. Foreign site-specific recombinases and their target sites provide an alternative and effective method for removing marker genes from plastids.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available