4.7 Article

Expression of an Arabidopsis vacuolar H+-pyrophosphatase gene (AVP1) in cotton improves drought- and salt tolerance and increases fibre yield in the field conditions

Journal

PLANT BIOTECHNOLOGY JOURNAL
Volume 9, Issue 1, Pages 88-99

Publisher

WILEY-BLACKWELL
DOI: 10.1111/j.1467-7652.2010.00535.x

Keywords

drought tolerance; proton pump; root development; salt stress; transgenic cotton

Funding

  1. USDA National Institute of Food and Agriculture [2007-35100-18382]
  2. China Scholarship Council

Ask authors/readers for more resources

The Arabidopsis gene AVP1 encodes a vacuolar pyrophosphatase that functions as a proton pump on the vacuolar membrane. Overexpression of AVP1 in Arabidopsis, tomato and rice enhances plant performance under salt and drought stress conditions, because up-regulation of the type I H+-PPase from Arabidopsis may result in a higher proton electrochemical gradient, which facilitates enhanced sequestering of ions and sugars into the vacuole, reducing water potential and resulting in increased drought-and salt tolerance when compared to wild-type plants. Furthermore, over-expression of AVP1 stimulates auxin transport in the root system and leads to larger root systems, which helps transgenic plants absorb water more efficiently under drought conditions. Using the same approach, AVP1-expressing cotton plants were created and tested for their performance under high-salt and reduced irrigation conditions. The AVP1-expressing cotton plants showed more vigorous growth than wild-type plants in the presence of 200 mM NaCl under hydroponic growth conditions. The soil-grown AVP1-expressing cotton plants also displayed significantly improved tolerance to both drought and salt stresses in greenhouse conditions. Furthermore, the fibre yield of AVP1-expressing cotton plants is at least 20% higher than that of wild-type plants under dry-land conditions in the field. This research indicates that AVP1 has the potential to be used for improving crop's drought- and salt tolerance in areas where water and salinity are limiting factors for agricultural productivity.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available