4.7 Article

Serpentine ecotypic differentiation in a polyploid plant complex: shared tolerance to Mg and Ni stress among di- and tetraploid serpentine populations of Knautia arvensis (Dipsacaceae)

Journal

PLANT AND SOIL
Volume 374, Issue 1-2, Pages 435-447

Publisher

SPRINGER
DOI: 10.1007/s11104-013-1813-y

Keywords

Adaptation; Ca/Mg ratio; Metal tolerance; Nickel; Ploidy level; Serpentine

Funding

  1. Grant Agency of Charles University in Prague [GAUK 418411]
  2. Grant Agency of the Academy of Sciences of the Czech Republic [KJB601110627, KJB600050812]
  3. Academy of Science of the Czech Republic [RVO 67985939]
  4. Ministry of Education, Youth and Sports of the Czech Republic

Ask authors/readers for more resources

Serpentine soils impose limits on plant growth and survival and thus provide an ideal model for studying plant adaptation under environmental stress. Despite the increasing amount of data on serpentine ecotypic differentiation, no study has assessed the potential role of polyploidy. We tested for links between polyploidy and the response to serpentine stress in Knautia arvensis, a diploid-tetraploid, edaphically differentiated complex. Variation in growth, biomass yield and tissue Mg and Ni accumulation in response to high Mg and Ni concentrations were experimentally tested using hydroponic cultivation of seedlings from eight populations of different ploidy and edaphic origin. Regardless of ploidy level, serpentine populations exhibited higher tolerance to both Mg and Ni stress than their non-serpentine counterparts, suggesting an adaptive character of these traits in K. arvensis. The effect of ploidy was rather weak and confined to a slightly better response of serpentine tetraploids to Mg stress and to higher biomass yields in tetraploids from both soil types. The similar response of diploid and tetraploid serpentine populations to edaphic stress corresponded with their previously described genetic proximity. This suggests that serpentine tolerance might have been transmitted during the local autopolyploid origin of serpentine tetraploids.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available