4.7 Article

Alleviation of the adverse effects of salinity stress in wheat (Triticum aestivum L.) by seed biopriming with salinity tolerant isolates of Trichoderma harzianum

Journal

PLANT AND SOIL
Volume 347, Issue 1-2, Pages 387-400

Publisher

SPRINGER
DOI: 10.1007/s11104-011-0858-z

Keywords

Salinity; Seed biopriming; Trichoderma; Wheat

Ask authors/readers for more resources

Salt stress is one of the major abiotic stresses limiting crop growth and productivity. This work investigated the potential of five ST isolates of Trichoderma harzianum (Th-13, Th-14, Th-19, Th-33 and Th-50) applied through seed biopriming in reducing the detrimental effects of salinity stress on wheat (Triticum aestivum L.). Growth, physiological and biochemical parameters were studied to characterize salt tolerance. One factor was treatments (T1, T2, T3, T4, T5 and T6) and second factor was four levels of salt stress viz., 0, 2, 4 and 6 dsm-1. In germination test, most of the isolates (Th-14, Th-19 and Th-13) were effective in improving germination percentage and reducing RPG during salinity stress. Seedlings raised from ST Trichoderma isolates had significantly higher root and shoot lengths, CC and MSI than control at all stress levels. The treatments Th-14, Th-19 and Th-13 showed lower accumulation of MDA content whereas proline content and phenolics were higher in treated plants under both non-saline and saline conditions. Highest MDA content was observed in control at salt stress level of 6 dSm(-1). It is concluded that seed biopriming with different salinity tolerant isolates of Trichoderma reduced severity of the effects of salinity though the amelioration was better in Th-14 under present experimental material and conditions.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available