4.7 Article

Rare earth elements and relation between their potential bioavailability and soil properties, Nidda catchment (Central Germany)

Journal

PLANT AND SOIL
Volume 349, Issue 1-2, Pages 303-317

Publisher

SPRINGER
DOI: 10.1007/s11104-011-0875-y

Keywords

REEs; Trace elements; Multiple regression; Parent material; Aqua regia; EDTA extraction

Ask authors/readers for more resources

Rare earth elements (REEs) are widely used in industry and the entry of REEs into the pedosphere is assumed. Data about REEs in soils are scarce since only a few studies discuss their ecologically relevant behavior. Hence, we investigated total contents (aqua regia digestion) and potentially bioavailable contents (EDTA extraction) of REEs in soils from the Nidda catchment in Hesse (Central Germany). The study site covers a 1,600 kmA(2) sized area and 232 soil samples from 63 soil profiles were examined. The total REE content varied considerably, ranging from 544 mg kg(-1) to 41 mg kg(-1) (mean 201.1 mg kg(-1)) with a high proportion of light REEs. Highest REE contents were found in the soilscape VB, followed by LVB, WNE, T, WSW and BF with the smallest concentrations. With respect to the parent material the contents decreased in the following order: basalt > clay slate > loess > sandstone. On average 15.9% of the total REEs belong to the potentially bioavailable fraction. They range greatly by a factor of 100, between 1.3 and 171.3 mg kg(-1) (average 33.5 mg kg(-1)). Remarkably, Yttrium has a maximum available proportion of 75%. In contrast, Ce showed the highest total contents with the smallest potentially bioavailable proportion of all elements. Regression analyses established relation between soil properties and the potential bioavailability of REEs. Around 53% (range from 29.9 to 76.8%) of the REE's potential bioavailability variations could be explained by the chosen variables (pH, clay and C(org) contents and the total element concentrations). Occurrence patterns and concentrations of REEs lie within the range of the results found in the available literature. Bioavailability is linked to soil properties and varies greatly according to the individual element. In comparison with the chosen soil properties the pH value shows the least impact on bioavailability.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available