4.7 Article

Nature and nurture in the dynamics of C, N and P during litter decomposition in Canadian forests

Journal

PLANT AND SOIL
Volume 339, Issue 1-2, Pages 163-175

Publisher

SPRINGER
DOI: 10.1007/s11104-010-0563-3

Keywords

Litter; Forests; Decomposition; Carbon; Nitrogen; Phosphorus; Ecological stoichiometry; C:N:P quotients

Funding

  1. Climate Change and Ecosystems Processes Networks of the Canadian Forest Service

Ask authors/readers for more resources

We measured changes in carbon (C), nitrogen (N) and phosphorus (P) concentrations and mass of 10 foliar litters decomposing over 12 years at 21 sites across Canada, ranging from subarctic to temperate, to evaluate the influence of litter quality (nature) and forest floor (nurture) on N and P dynamics. Most litters lost P faster than N, relative to C, except in one litter which had a high initial C:P quotient (2,122). Net N loss occurred at mass C:N quotients of between 33 and 68, positively correlated with the C:N quotient in the original litter, and net P loss likely occurred at C:P quotients between 800 and 1,200. Forest floor properties also influenced N and P dynamics: the higher the C:N or C:P quotient in the surface soil organic matter, the smaller the proportion of initial N or P left in the decomposing litter, relative to C. There was a convergence of C:N and C:P quotients as the litters decomposed, with an overall mass ratio of 427:17:1 when the litters reached 20% original C remaining. These results, covering a wide range of sites and litters and thus decomposition rates, showed that the C:N:P quotients followed similar trajectories and converged as the litters decomposed. The relative loss of N and P was affected by both the initial litter nutrient concentration and the chemistry of the site forest floor, with the former being more important than the latter, resulting in spatial variations in nutrient content of the forest floor.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available