4.7 Article

Silicon enhances growth independent of silica deposition in a low-silica rice mutant, lsi1

Journal

PLANT AND SOIL
Volume 331, Issue 1-2, Pages 361-375

Publisher

SPRINGER
DOI: 10.1007/s11104-009-0258-9

Keywords

Cultivar; EDX; Electron microscopy; Histochemical analysis; lsi1; Motor cell; Oryza sativa; Rice; Silica body; X-ray analytical microscope

Ask authors/readers for more resources

To examine whether silica bodies are essential for silicon-enhanced growth of rice seedlings, we investigated the response of rice, Oryza sativa L., to silicon treatment. Silicic acid treatment markedly enhanced the SPAD (soil plant analytical development) values of leaf blades and the growth and development of leaves and lateral roots in cvs. Hinohikari and Oochikara, and a low-silicon mutant, lsi1. Combination of ethanol-benzene displacement and staining with crystal violet lactone enabled more detailed histochemical analysis to visualize silica bodies in the epidermis under bright-field microscopy. Supply of silicon induced the development of motor cells and silica bodies in epidermal cells in Hinohikari and Oochikara but not or marginal in lsi1. X-ray analytical microscopy detected silicon specifically in the leaf sheath, the outermost part of the stem, and the leaf blade midrib, suggesting that silicon is distributed to tissues involved in maintaining rigidity of the plant to prevent lodging, rather than being passively deposited in growing tissues. Silicon supplied at high dose accumulated in all rice seedlings and enhanced growth and SPAD values with or without silica body formation. Silicon accumulated in the cell wall may play an important physiological role different from that played by the silica deposited in the motor cell and silica bodies.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available