4.7 Article

Monitoring of root growth and redox conditions in paddy soil rhizotrons by redox electrodes and image analysis

Journal

PLANT AND SOIL
Volume 341, Issue 1-2, Pages 221-232

Publisher

SPRINGER
DOI: 10.1007/s11104-010-0637-2

Keywords

Rhizotron; Paddy soil; Rhizosphere; Root-zone; Redox potential; Image analysis

Ask authors/readers for more resources

The root-zone of wetland rice was monitored in a paddy soil throughout a vegetation period with the aid of a rhizotron experiment. For this purpose (a) digital images of the root-zone were taken daily, and (b) the redox potential was measured in situ every day. The images were processed by image analysis in order to display areas of oxidation and reduction in the soil. Therefore, thresholds were set to simplify the localization and quantification of discrete areas which were colourized due to the redox potential. Both, images and measured redox potentials, provide the basis for the visualization of the root and redox dynamics in the root-zone. The anaerobic root-zone of flooded paddy soils is significantly influenced by the aerenchymal transport of oxygen to rice roots. The release of oxygen into the rhizosphere, which causes different patterns of oxidized and reduced areas in the course of the vegetation period, also affects microbial communities such as methane producing archaea or methane oxidizing bacteria. The visualization of redox dynamics may, therefore, be useful to localize potential hotspots for the microorganisms in the root-zone of paddy soils. The reduced and oxidized conditions changed spatiotemporally. Oxidized areas were mostly found in the surrounding of active roots and in a distinct layer next to the soil surface. Reduced areas shifted from beneath the oxidized surface layer into sparsely-rooted soil. The ratio of the analyzed oxidized and reduced areas was oscillating with increasing intensity throughout the monitored vegetation period.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available