4.7 Article

Traits related to differences in function among three arbuscular mycorrhizal fungi

Journal

PLANT AND SOIL
Volume 339, Issue 1-2, Pages 231-245

Publisher

SPRINGER
DOI: 10.1007/s11104-010-0571-3

Keywords

Arbuscular mycorrhiza; Extraradical mycelium; Functional diversity; Hyphal growth model; Medicago truncatula; Phosphorus

Funding

  1. ETH Zurich [10 TH 14/05-3]
  2. Austrian Science Fund (FWF) [T341-N13]

Ask authors/readers for more resources

Diversity in phosphorus (P) acquisition strategies was assessed among three species of arbuscular mycorrhizal fungi (AMF) isolated from a single field in Switzerland. Medicago truncatula was used as a test plant. It was grown in a compartmented system with root and root-free zones separated by a fine mesh. Dual radioisotope labeling (P-32 and P-33) was employed in the root-free zone as follows: P-33 labeling determined hyphal P uptake from different distances from roots over the entire growth period, whereas P-32 labeling investigated hyphal P uptake close to the roots over the 48 hours immediately prior to harvest. Glomus intraradices, Glomus claroideum and Gigaspora margarita were able to take up and deliver P to the plants from maximal distances of 10, 6 and 1 cm from the roots, respectively. Glomus intraradices most rapidly colonized the available substrate and transported significant amounts of P towards the roots, but provided the same growth benefit as compared to Glomus claroideum, whose mycelium was less efficient in soil exploration and in P uptake and delivery to the roots. These differences are probably related to different carbon requirements by these different Glomus species. Gigaspora margarita provided low P benefits to the plants and formed dense mycelium networks close to the roots where P was probably transiently immobilized. Numerical modeling identified possible mechanisms underlying the observed differences in patterns of mycelium growth. High external hyphal production at the root-fungus interface together with rapid hyphal turnover were pointed out as important factors governing hyphal network development by Gigaspora, whereas nonlinearity in apical branching and hyphal anastomoses were key features for G. intraradices and G. claroideum, respectively.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available