4.7 Article

Identification and functional analysis of two ZIP metal transporters of the hyperaccumulator Thlaspi caerulescens

Journal

PLANT AND SOIL
Volume 325, Issue 1-2, Pages 79-95

Publisher

SPRINGER
DOI: 10.1007/s11104-009-0151-6

Keywords

TcZNT5; TcZNT6; Thlaspi caerulescens; Hyperaccumulation; Metal transporter; Zinc; Cadmium

Funding

  1. Interdisciplinary Research and Education Fund (INREF) of Wageningen University

Ask authors/readers for more resources

The heavy metal hyperaccumulator Thlaspi caerulescens expresses several ZIP-like genes at higher levels than their orthologues in non-hyperaccumulator species, but it is not clear why. To elucidate the function of the T. caerulescens orthologues of the Arabidopsis thaliana ZIP5 and ZIP6 genes, full-length cDNAs of TcZNT5-LC and TcZNT6-LC were cloned, their expression was examined and genes were expressed in A. thaliana. Transcript level analysis revealed the constitutively high expression of these two genes in T. caerulescens compared to AtZIP5 and AtZIP6 genes and differential expression of both genes when comparing two accessions of T. caerulescens with different metal accumulation properties. Expression of TcZNT5-LC in A. thaliana did not modify Cd or Zn tolerance, but mildly affected the root and shoot Zn concentrations towards a hyperaccumulator shoot to root concentration ratio. A. thaliana zip5 knock-out mutants showed increased tolerance to Cd and decreased seed mineral concentrations. Expression of TcZNT6-LC enhanced the Cd sensitivity of A. thaliana, but no phenotype was observed for the zip6 mutant. In conclusion, the changes in expression of TcZNT5-LC and TcZNT6-LC upon changes in Zn or Cd exposure indicate both genes act in metal homeostasis, but their CaMV 35S-mediated expression in A. thaliana does not create T. caerulescens hyperaccumulator phenotypes.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available