4.7 Article

Increasing Nitric Oxide Content in Arabidopsis thaliana by Expressing Rat Neuronal Nitric Oxide Synthase Resulted in Enhanced Stress Tolerance

Journal

PLANT AND CELL PHYSIOLOGY
Volume 53, Issue 2, Pages 344-357

Publisher

OXFORD UNIV PRESS
DOI: 10.1093/pcp/pcr181

Keywords

Abiotic stress; Arabidopsis thaliana; Development; Disease resistance; Nitric oxide; nNOS

Funding

  1. National Natural Science Foundation of China [90917001]

Ask authors/readers for more resources

Nitric oxide (NO) plays essential roles in many physiological and developmental processes in plants, including biotic and abiotic stresses, which have adverse effects on agricultural production. However, due to the lack of findings regarding nitric oxide synthase (NOS), many difficulties arise in investigating the physiological roles of NO in vivo and thus its utilization for genetic engineering. Here, to explore the possibility of manipulating the endogenous NO level, rat neuronal NOS (nNOS) was expressed in Arabidopsis thaliana. The 35S::nNOS plants showed higher NOS activity and accumulation of NO using the fluorescent probe 3-amino, 4-aminomethyl-2', 7'-difluorescein, diacetate (DAF-FM DA) assay and the hemoglobin assay. Compared with the wild type, the 35S::nNOS plants displayed improved salt and drought tolerance, which was further confirmed by changes in physiological parameters including reduced water loss rate, reduced stomatal aperture, and altered proline and malondialdehyde content. Quantitative real-time PCR analyses revealed that the expression of several stress-regulated genes was up-regulated in the transgenic lines. Furthermore, the transgenic lines also showed enhanced disease resistance against Pseudomonas syringae pv. tomato (Pst) DC3000 by activating the expression of defense-related genes. In addition, we found that the 35S::nNOS lines flowered late by regulating the expression of CO, FLC and LFY genes. Together, these results demonstrated that it is a useful strategy to exploit the roles of plant NO in various processes by the expression of rat nNOS. The approach may also be useful for genetic engineering of crops with increased environmental adaptations.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available