4.7 Article

The model plant Medicago truncatula exhibits biparental plastid inheritance

Journal

PLANT AND CELL PHYSIOLOGY
Volume 49, Issue 1, Pages 81-91

Publisher

OXFORD UNIV PRESS
DOI: 10.1093/pcp/pcm170

Keywords

biparental inheritance; Medicago truncatula; model plant; plastid; pollen grain

Ask authors/readers for more resources

The plastid, which originated from the endosymbiosis of a cyanobacterium, contains its own plastid DNA (ptDNA) that exhibits a unique mode of inheritance. Approximately 80 of angiosperms show maternal inheritance, whereas the remainder exhibit biparental inheritance of ptDNA. Here we studied ptDNA inheritance in the model legume, Medicago truncatula. Cytological analysis of mature pollen with DNA-specific fluorescent dyes suggested that M. truncatula is one of the few model plants potentially showing biparental inheritance of ptDNA. We further examined pollen by electron microscopy and revealed that the generative cell (a mother of sperm cells) indeed has many DNA-containing plastids. To confirm biparental inheritance genetically, we crossed two ecotypes (Jemalong A17 and A20), and the transmission mode of ptDNA was investigated by a PCR-assisted polymorphism. Consistent with the cytological observations, the majority of F-1 plants possessed ptDNAs from both parents. Interestingly, cotyledons of F-1 plants tended to retain a biparental ptDNA population, while later emergent leaves tended to be uniparental with either one of the parental plastid genotypes. Biparental transmission was obvious in the F-2 population, in which all plants showed homoplasmy with either a paternal or a maternal plastid genotype. Collectively, these data demonstrated that M. truncatula is biparental for ptDNA transmission and thus can be an excellent model to study plastid genetics in angiosperms.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available