4.7 Article

Characterization of novel genes induced by sexual adhesion and gamete fusion and of their transcriptional regulation in Chlamydomonas reinhardtii

Journal

PLANT AND CELL PHYSIOLOGY
Volume 49, Issue 6, Pages 981-993

Publisher

OXFORD UNIV PRESS
DOI: 10.1093/pcp/pcn076

Keywords

cell-cell recognition; Chlamydomonas reinhardtii; transcriptional regulation; zygote formation

Ask authors/readers for more resources

When mating type plus and minus gametes of Chlamydomonas are mixed, they agglutinate with each other via their flagella, fuse, then initiate the zygote formation program which includes synthesis of the zygote cell wall, fusion of nuclei and chloroplasts, and the digestion of chloroplast DNA from the minus parent. The mRNAs from gamete and zygote cells was isolated and hybridized to cDNA-macroarray filters both to identify new genes expressed during the mating reaction and the early zygote formation process and to analyze the gene expression programs that underlie these sexual processes. Twenty-one novel genes were identified in this screen, designated as EZY ((e) under bar arly (z) under bar ygote (e) under bar xpressed) genes. The EZY genes included genes encoding proteins whose function is unknown, and genes encoding proteins that appear to be involved in processes such as cell wall synthesis, gene expression, intracellular trafficking or secretion, and vesicular transport in zygotic cells. All of the EZY genes were strongly induced within 1 h during the mating process, including early zygote formation. The transcriptional characteristics of EZY genes were analyzed by using the fusion-defective mutant fus mt(+). Among the EZY genes, 12 genes were not activated in fusion-defective conditions, suggesting that cell fusion is required for their expression. The remaining nine that were transcribed in fusion-defective fus matings were also inducible by cell wall removal in either vegetative or gametic cells, indicating that these genes were induced only indirectly by the cAMP signaling pathway initiated by flagellar agglutination as a result of mating-induced cell wall loss.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available