4.3 Article

The Manicouagan impact structure as a terrestrial analogue site for lunar and martian planetary science

Journal

PLANETARY AND SPACE SCIENCE
Volume 58, Issue 4, Pages 538-551

Publisher

PERGAMON-ELSEVIER SCIENCE LTD
DOI: 10.1016/j.pss.2009.09.010

Keywords

Manicouagan; Hydrothermal systems; Central uplifts; Mars; Moon; Terrestrial analogues

Funding

  1. Canada Research Chairs
  2. Canadian Space Agency
  3. Natural Sciences and Engineering Research Council of Canada (NSERC)
  4. University of New Brunswick

Ask authors/readers for more resources

The 90 km diameter, late Triassic Manicouagan impact structure of Quebec, Canada, is a well-preserved, undeformed complex crater possessing an anorthositic central uplift and a 55 km diameter melt sheet. As such, it provides a valuable terrestrial analogue for impact structures developed on other planetary bodies, especially the Moon and Mars, which are currently the focus of exploration initiatives. The scientific value of Manicouagan has recently been enhanced due to the production, between 1994 and 2006, of similar to 18 km of drill core from 38 holes by the mineral exploration industry. Three of these holes are in excess of 1.5 km deep, with the deepest reaching 1.8 km. Here we combine recent field work, sampling and the drill core data with previous knowledge to provide insight into processes occurring at Manicouagan and, by inference, within extraterrestrial impact structures. Four areas of comparative planetology are discussed: impact melt sheets, central uplifts, impact-generated hydrothermal regimes and footwall breccias. Human training and instrument testing opportunities are also considered. The drill core reveals that the impact melt and clast-bearing impact melts in the centre of the structure reach thicknesses of 1.4 km. The 1.1 km thick impact melt has undergone differentiation to yield a lower monzodiorite, a transitional quartz monzodiorite and an upper quartz monzonite sequence. This calls into question the previous citing of Manicouagan as an exemplar of a relatively large crater possessing an undifferentiated melt sheet, which was used as a rationale for assigning different composition lunar impact melts and clast-bearing impact melts to separate cratering events. The predominantly anorthositic central uplift at Manicouagan is comparable to certain lunar highlands material, with morphometric analogies to the King, Tycho, Pythagoras, Jackson, and Copernicus impact structures, which have similar diameters and uplift structure. Excellent exposure of the Manicouagan uplift facilitates mapping and an appraisal of its formation and collapse mechanisms, enhanced by drill core data from the centre of the structure. Recent field studies at the edge of the central island at Manicouagan, and multiple drill core sections through footwall lithologies, provide insight into allochthonous (clastic and suevitic) and autochthonous breccia formation, as well as shock effects. The hydrothermal regimes developed at Manicouagan are akin to systems proposed for Noachian (> 3.5 Ga) Mars that involve alteration of impact melts via meteoritic and surface waters, with the generation of phyllosilicates, zeolites, hematite, sulfates and sulfides that can contribute to martian soil formation and sedimentation processes. (C) 2009 Elsevier Ltd. All rights reserved.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.3
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available