4.5 Article

Stimulation of Syncytium Formation in vitro in Human Trophoblast Cells by Galectin-1

Journal

PLACENTA
Volume 31, Issue 9, Pages 825-832

Publisher

W B SAUNDERS CO LTD
DOI: 10.1016/j.placenta.2010.06.016

Keywords

Galectin-1; BeWo; Primary trophoblast cells; Syncytium formation

Funding

  1. Deutsche Forschungsgemeinschaft (DFG)

Ask authors/readers for more resources

Background: Galectin-1 (gal-1), a member of the mammalian beta-galactoside-binding proteins, exerts biological effects by recognition of glycan ligands, including those involved in cell adhesion and growth regulation. In trophoblast cells, gal-1 binds to cell surface glycoproteins (e.g., Mucin 1). It has been demonstrated that gal-1 recognizes appropriate glycotopes on the syncytiotrophoblast and extravillous trophoblast from second trimester human placenta and choriocarcinoma cells BeWo, which reveal two coexisting phenotypes, the cytotrophoblast-like and the syncytiotrophoblast-like phenotype. So the aim of this study was to investigate the effect of gal-1 on syncytium formation in BeWo and human villous trophoblasts (HVT) cells. Materials and methods: The effect of gal-1 on syncytium formation was investigated with immunocytochemical and double immunofluorescence stainings, cell-labelling and Real-time RT-PCR. BeWo choriocarcinoma and HVT cells were incubated in vitro for 24 and 48 h in the absence (controls) and presence of gal-1 and forskolin and stained with antibodies against Ki67, beta-catenin, E-cadherin and syncytin. BeWo and HVT cells were incubated with 60 mu g/ml gal-1 for 48 h (BeWo) or 9611 (HVT) and cell fusion was detected by fluorescent cell-labelling solution. Finally, BeWo cells were incubated for 1 h or 48 h in the absence and presence of 60 mu g/ml gal-1 and Real-time RT-PCR was performed. Results: We showed with immunocytochemical staining a downregulation of beta-catenin expression in the 24 h BeWo cell culture and with double immunofluorescence staining an inhibition of the beta-catenin and E-cadherin expression in the 48 h BeWo cell culture stimulated with gal-1 or forskolin. The inhibition of E-cadherin was demonstrated on mRNA level in the 1 h BeWo cell culture too. Increased cell fusion was also showed with DiO and Dil fluorescent cell-labelling solution in the 48 h BeWo cell culture. In addition, we demonstrated the downregulation of Ki67 protein expression in the 24 h BeWo cell culture and on mRNA level in the 1 h BeWo cell culture. We also showed the upregulation of syncytin protein and mRNA expression after incubation of the 48 h BeWo cell culture with gal-1 or forskolin. Similar results were obtained with HVT cells: the amount of cell fusion was significantly increased in the gal-1 treated 48 h HVT cell culture in vitro compared to untreated cells as demonstrated with beta-catenin and E-cadherin double immunofluorescence staining. This increase was also shown by fluorescent cell-labelling with DiO and Dil in the 96 h HVT cell culture compared to untreated cells. Conclusion: Our data suggest that gal-1 stimulates the syncytium formation in choriocarcinoma cells BeWo and HVT cells in vitro and inhibits the expression of beta-catenin, E-cadherin and in addition 1667 in BeWo cells. Therefore gal-1 may be a major trigger for the process of trophoblast cell fusion. (C) 2010 Published by Elsevier Ltd.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.5
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available