4.5 Article

α-MSH activates immediate defense responses to UV-induced oxidative stress in human melanocytes

Journal

PIGMENT CELL & MELANOMA RESEARCH
Volume 22, Issue 6, Pages 809-818

Publisher

WILEY
DOI: 10.1111/j.1755-148X.2009.00615.x

Keywords

Melanocyte; alpha-MSH; ultraviolet radiation; oxidative stress; DNA damage; hydrogen peroxide; catalase

Funding

  1. Dermatology Foundation Research Grant and Ohio Cancer Research Associates [RO1 ES 009110]

Ask authors/readers for more resources

P>Exposure of cultured human melanocytes to ultraviolet radiation (UV) results in DNA damage. In melanoma, UV-signature mutations resulting from unrepaired photoproducts are rare, suggesting the possible involvement of oxidative DNA damage in melanocyte malignant transformation. Here we present data demonstrating immediate dose-dependent generation of hydrogen peroxide in UV-irradiated melanocytes, which correlated directly with a decrease in catalase activity. Pretreatment of melanocytes with alpha-melanocortin (alpha-MSH) reduced the UV-induced generation of 7,8-dihydro-8-oxyguanine (8-oxodG), a major form of oxidative DNA damage. Pretreatment with alpha-MSH also increased the protein levels of catalase and ferritin. The effect of alpha-MSH on 8-oxodG induction was mediated by activation of the melanocortin 1 receptor (MC1R), as it was absent in melanocytes expressing loss-of-function MC1R, and blocked by concomitant treatment with an analog of agouti signaling protein (ASIP), ASIP-YY. This study provides unequivocal evidence for induction of oxidative DNA damage by UV in human melanocytes and reduction of this damage by alpha-MSH. Our data unravel some mechanisms by which alpha-MSH protects melanocytes from oxidative DNA damage, which partially explain the strong association of loss-of-function MC1R with melanoma.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.5
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available