4.5 Article

Zoospore Density-Dependent Behaviors of Phytophthora nicotianae Are Autoregulated by Extracellular Products

Journal

PHYTOPATHOLOGY
Volume 100, Issue 7, Pages 632-637

Publisher

AMER PHYTOPATHOLOGICAL SOC
DOI: 10.1094/PHYTO-100-7-0632

Keywords

-

Categories

Funding

  1. USDA-CSREES [2005-51101-02337]

Ask authors/readers for more resources

Phytophthora species are destructive fungus-like plant pathogens that use asexual single-celled flagellate zoospores for dispersal and plant infection. Many of the zoospore behaviors are density-dependent although the underlying mechanisms are poorly understood. Here, we use P nicotianae as a model and demonstrate autoregulation of some zoospore behaviors using signal molecules that zoospores release into the environment. Specifically, zoospore aggregation, plant targeting, and infection required or were enhanced by threshold concentrations of these signal molecules. Below the threshold concentration, zoospores did not aggregate and move toward a cauline leaf of Arabidopsis thaliana (Col-0) and failed to individually attack annual vinca (Catharanthus roseus cv. Little Bright Eye). These processes were reversed when supplemented with zoospore-free fluid (ZFF) prepared from a zoospore suspension above threshold densities hut not with calcium chloride at a concentration equivalent to extracellular Ca2+ in ZFF. These results suggest that Ca2+ is not a primary signal molecule regulating these communal behaviors. Zoospores coordinated their communal behaviors by releasing, detecting, and responding to signal molecules. This chemical communication mechanism raises the possibility that Phyrophthora plant infection may not depend solely on zoospore number in the real world. Single zoospore infection may take place if it is signaled by a common molecule available in the environment which contributes to the destructiveness of these plant pathogens.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.5
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available