4.7 Article

Protective effects of purified safflower extract on myocardial ischemia in vivo and in vitro

Journal

PHYTOMEDICINE
Volume 16, Issue 8, Pages 694-702

Publisher

ELSEVIER GMBH
DOI: 10.1016/j.phymed.2009.02.019

Keywords

Carthamus tinctorius L.; Safflower; Myocardial ischemia; H2O2; Apoptosis; ROS

Funding

  1. National Science Fund for Distinguished Young Scholars [30525043]

Ask authors/readers for more resources

Carthamus tinctorius L. (safflower) is one of the most commonly used Chinese herbal medicines to prevent and treat cardiac disease in clinical practice. However, the mechanisms responsible for such protective effects remain largely unknown. In this study, we investigated the anti-myocardial ischemia effects of a purified extract of C tinctorius (ECT) both in vivo and in vitro. An animal model of myocardial ischemia injury was induced by left anterior descending coronary artery occlusion in adult rats. Pretreatment with ECT (100, 200, 400, 600 mg/kg body wt.) could protect the heart from ischemia injury by limiting infarct size and improving cardiac function. In the in vitro experiment, neonatal rat ventricular myocytes were incubated to test the direct cytoprotective effect of ECT against H2O2 exposure. Pretreatment with 100-400 mu g/ml ECT prior to H2O2 exposure significantly increased cell viability as revealed by 3(4,5-dimethylthiazol-2-yl)-2,5-diphenyl tetrazolium bromide (MTT) assay. ECT also markedly attenuated H2O2-induced cardiomyocyte apoptosis, as detected by Annexin V and PI double labeling with flow cytometry. The intracellular level of reactive oxygen species (ROS) was shown by 2',7'-dichlorofluorescin diacetate (DCFH-DA), and ECT pretreatment significantly inhibited H2O2-induced ROS increase. We made a preliminary examination of the signaling cascade involved in ECT mediated anti-apoptotic effects. Phosphatidylinositol 3 kinase (PI3K) inhibitor (LY294002) blocked the cytoprotective effect conferred by ECT. Taken together, our findings provide the first evidence that the cardioprotective effects of ECT in myocardial ischemia operate partially through reducing oxidative stress induced damage and apoptosis. The protection is achieved by scavenging of ROS and mediating the PI3K signaling pathway. (C) 2009 Elsevier GmbH. All rights reserved.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available