4.7 Article

Gallocatechin biosynthesis via a flavonoid 3′,5′-hydroxylase is a defense response in Norway spruce against infection by the bark for beetle-associated sap-staining fungus Endoconidiophora polonica

Journal

PHYTOCHEMISTRY
Volume 148, Issue -, Pages 78-86

Publisher

PERGAMON-ELSEVIER SCIENCE LTD
DOI: 10.1016/j.phytochem.2018.01.017

Keywords

Gallocatechin; Flavonoid 3 ',5 '-hydroxylase; Norway spruce; Picea abies; Endoconidiophora polonica; Blue-stain fungus; Anti-fungal defense

Funding

  1. Max Planck Society

Ask authors/readers for more resources

One of the best-studied defense responses to fungal infection in Norway spruce (Picea abies) is the biosynthesis of fiavan-3-ols, which accumulate as monomers or polymers known as proanthocyanidins. The individual flavan-3-ol units consist of compounds with a 3',4'-dihydroxylated B ring [2,3-(trans)-(+)-catechin or 2,3-(cis)-(-)-epicatechin] and compounds with a 3',4',5'-trihydroxylated B ring [2,3 (trans)-(+)-gallocatechin or 2,3-(cis)-(-)-epigallocatechin]. While much is known about the biosynthesis and biological activity of catechin in Norway spruce, there is little comparable information about gallocatechin or epigallocatechin. We found that there was a significant increase in the gallocatechin content of Norway spruce bark and wood after inoculation with the bark beetle-associated sap-staining fungus Endoconidiophora polonica. Gallocatechins increased proportionally more than catechins as both monomers and units of polymers. A flavonoid 3',5'-hydroxylase gene identified in Norway spruce was shown by heterologous expression in Nicotiana benthamiana to be involved in the conversion of 2,3 (trans)-(+)-catechin to 2,3 (trans)-(+)-gallocatechin. The formation of the trihydroxylated B ring in Norway spruce occurs at the level of fiavan-3-ols, rather than at the level of dihydroflavonols as in many angiosperms. The transcript abundance of the flavonoid 3',5'-hydroxylase gene also increased significantly during fungal infection underlining its importance in gallocatechin biosynthesis. Comparisons of the effect of 2,3 (trans)-(+)-catechin and 2,3 (trans)-(+)-gallocatechin on fungal growth revealed that 2,3 (trans)-(+)-catechin is a stronger inhibitor of fungal growth, while 2,3 (trans)-(+)-gallocatechin is a stronger inhibitor of melanin biosynthesis. (C) 2018 Elsevier Ltd. All rights reserved.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available