4.7 Article

Changes in the metabolome and histopathology of Amaranthus hypochondriacus L. in response to Ageratum enation virus infection

Journal

PHYTOCHEMISTRY
Volume 80, Issue -, Pages 8-16

Publisher

PERGAMON-ELSEVIER SCIENCE LTD
DOI: 10.1016/j.phytochem.2012.05.007

Keywords

NMR; MRI; Amaranthus hypochondriacus; Ageratum enation virus; Metabolic profile

Funding

  1. Council of Scientific and Industrial Research, New Delhi

Ask authors/readers for more resources

Amaranthus hypochondriacus L. infected with Ageratum enation virus (AEV) was investigated for identifying alteration in the anatomical structures, sap translocation and metabolomic variations using light microscopy, magnetic resonance imaging, NMR spectroscopy and GC-MS, respectively. Combination of GC-MS and NMR spectroscopy identified 68 polar and non-polar metabolites that were present in different levels in healthy and virus-infected A. hypochondriacus. Contrast of T-1 and T-2 weighted MR images showed significant differences in the spatial distribution of water, lipids and macromolecules indicating alterations in the cortical region and disruption of vascular bundles in virus-infected stem tissues. MRI observations are supported by light microscopic examination. Microscopic examination of AEV infected stem revealed severe hyperplasia with a considerable reduction in size of stem cells. The NMR spectroscopy and GC-MS analysis indicated that viral infection significantly affected the plant primary and secondary metabolism resulting in decreased glucose and sucrose content and increase in the concentration of beta-sitosterol and stigmasterol. Higher accumulation of TCA cycle intermediates such as citric acid and malic acid in AEV infected plants indicated enhanced rate of respiratory metabolism. The viral stress significantly increases the concentration of erythritol and myo-inositol as compared to healthy ones. Lower concentration of glucose and sucrose in viral-infected stem tissues suggests decreased translocation of photosynthates in the plants. The results demonstrated potential of MRI, NMR spectroscopy and GC-MS for studying anatomical and metabolic variations in virus-infected plants. (C) 2012 Elsevier Ltd. All rights reserved.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available