4.7 Review

The effects of herbivore-induced plant volatiles on interactions between plants and flower-visiting insects

Journal

PHYTOCHEMISTRY
Volume 72, Issue 13, Pages 1647-1654

Publisher

PERGAMON-ELSEVIER SCIENCE LTD
DOI: 10.1016/j.phytochem.2011.03.013

Keywords

Induced defence; Indirect defence; Pollinators; Herbivores; Parasitoids; Terpenoids; Green leaf volatiles; Glucosinolates

Funding

  1. Earth and Life Sciences council of the Netherlands Organisation for Scientific Research (NWOALW)

Ask authors/readers for more resources

Plants are faced with a trade-off between on the one hand growth, development and reproduction and on the other hand defence against environmental stresses. Yet, research on insect-plant interactions has addressed plant-pollinator interactions and plant-attacker interactions separately. Plants have evolved a high diversity of constitutive and induced responses to attack, including the systemic emission of herbivore-induced plant volatiles (HIPVs). The effect of HIPVs on the behaviour of carnivorous insects has received ample attention for leaf-feeding (folivorous) species and their parasitoids and predators. Here, we review whether and to what extent HIPVs affect the interaction of plants in the flowering stage with mutualistic and antagonistic insects. Whereas the role of flower volatiles in the interactions between plants and insect pollinators has received increased attention over the last decade, studies addressing both HIPVs and pollinator behaviour are rare, despite the fact that in a number of plant species herbivory is known to affect flower traits, including size, nectar secretion and composition. In addition, folivory and florivory can also result in significant changes in flower volatile emission and in most systems investigated, pollinator visitation decreased, although exceptions have been found. Negative effects of HIPVs on pollinator visitation rates likely exert negative selection pressure on HIPV emission. The systemic nature of herbivore-induced plant responses and the behavioural responses of antagonistic and mutualistic insects, requires the study of volatile emission of entire plants in the flowering stage. We conclude that approaches to integrate the study of plant defences and pollination are essential to advance plant biology, in particular in the context of the trade-off between defence and growth/reproduction. (C) 2011 Elsevier Ltd. All rights reserved.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available