4.7 Review

Evolution of metabolic diversity: Insights from microbial polyketide synthases

Journal

PHYTOCHEMISTRY
Volume 70, Issue 15-16, Pages 1858-1866

Publisher

PERGAMON-ELSEVIER SCIENCE LTD
DOI: 10.1016/j.phytochem.2009.05.021

Keywords

Polyketide; Evolution; Metabolic diversity; Recombination

Funding

  1. DFG

Ask authors/readers for more resources

Polyketides are a family of complex natural products that are built from simple carboxylic acid building blocks. In microorganisms, the majority of these secondary metabolites are produced by exceptionally large, multifunctional proteins termed polyketide synthases (PKSs). Each unit of a type I PKS assembly line resembles a mammalian type fatty acid synthase (FAS), although certain domains are optionally missing. The evolutionary analysis of microbial PKS has revealed a long joint evolution process of PKSs and FASs. The phylogenomic analysis of modular type I PKSs as the most widespread PKS type in bacteria showed a large impact of gene duplications and gene losses on the evolution of type I PKS in different bacterial groups. The majority of type I PKSs in actinobacteria and cyanobacteria may have evolved from a common ancestor, whereas in proteobacteria most type I PKSs were acquired from other bacterial groups. The modularization of type I PKSs almost unexceptionally started with multiple duplications of a single ancestor module. The repeating modules represent ideal platforms for recombination events that can lead to corresponding changes in the actual chemistry of the products. The analysis of these natural reprogramming events of PKSs may assist in the development of concepts for the biocombinatorial design of bioactive compounds. (C) 2009 Elsevier Ltd. All rights reserved.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available