4.5 Article

Developmental disruption of the serotonin system alters circadian rhythms

Journal

PHYSIOLOGY & BEHAVIOR
Volume 105, Issue 2, Pages 257-263

Publisher

PERGAMON-ELSEVIER SCIENCE LTD
DOI: 10.1016/j.physbeh.2011.08.032

Keywords

Pet-1; Serotonin; Suprachiasmatic nucleus; Circadian; Wheel-running; Locomotor

Ask authors/readers for more resources

Serotonin (5-HT) plays an important role in circadian rhythms, acting to modulate photic input to the mammalian clock, the suprachiasmatic nucleus (SCN), as well as playing a role in non-photic input. The transcription factor Pet-1 is an early developmental indicator of neurons that are destined for a 5-HTergic fate. Mice lacking the Pet-1 gene show a 70% loss of 5-HT immunopositive cell bodies in adult animals. 5-HT neurotoxic lesion studies using 5,7-dihydroxytryptamine (5,7-DHT) have highlighted species-specific differences in response to 5-HT depletion and studies using knockout mice lacking various 5-HT receptors have helped to elucidate the role of individual 5-HT receptors in mediating 5-HT's effects on circadian rhythms. Here we investigate the effects of a developmental disruption of the 5-HT system on the SCN and circadian wheel-running behavior. Immunohistochemical analysis confirmed depletion of 5-HT fiber innervation to the SCN as well as greatly reduced numbers of cell bodies in the raphe nuclei in Pet-1 knockout mice. These mice also display significantly longer free-running periods than wildtype or heterozygote counterparts. In light-dark cycles, knockouts showed a shift in peak wheel running behavior towards the late night as compared to wildtype and heterozygote animals. When kept in constant darkness for 70 days, wildtype animals showed decreases in free-running period over time while the period of knockout animals remained constant. Immunohistochemical analysis for neuropeptides within the SCN indicates that the behavioral changes observed in Pet-1 knockout mice were not due to gross changes in SCN structure. These results suggest that developmental loss of serotonergic input to the clock has long-term consequences for both circadian clock parameters and the temporal organization of activity. (C) 2011 Elsevier Inc. All rights reserved.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.5
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available