4.5 Article

Distinctive patterns of microRNA expression in extraocular muscles

Journal

PHYSIOLOGICAL GENOMICS
Volume 41, Issue 3, Pages 289-296

Publisher

AMER PHYSIOLOGICAL SOC
DOI: 10.1152/physiolgenomics.00169.2009

Keywords

miR-206; miR-499; muscle-specific microRNAs; microarray profiling

Funding

  1. National Eye Institute [EY-013862]

Ask authors/readers for more resources

Zeiger U, Khurana TS. Distinctive patterns of microRNA expression in extraocular muscles. Physiol Genomics 41: 289-296, 2010. First published February 9, 2010; doi:10.1152/physiolgenomics.00169.2009.-The extraocular muscles (EOMs) are a unique group of muscles that are anatomically and physiologically distinct from other muscles. We and others have shown that EOMs have a unique transcriptome and proteome. Here we investigated the expression pattern of microRNAs (miRNAs), as they may play a role in generating the unique EOM allotype. We isolated RNA and screened LC Sciences miRNA microarrays covering the sequences of miRBase 10.0 to define the microRNAome of normal mouse EOM and tibialis anterior (TA) limb muscle. Seventy-four miRNAs were found to be differentially regulated (P value <0.05) of which 31 (14 upregulated, 17 downregulated) were differentially regulated at signal strength >500. Muscle-specific miRNAs miR-206 and miR-499 were upregulated and miR-1, miR-133a, and miR-133b were downregulated in EOM. Quantitative PCR (qPCR) analysis was used to validate the differential expression. Bioinformatic tools were used to identify potential miRNA-mRNA-protein interactions and integrate data with previous transcriptome and proteomic profiling data. Luciferase assays using cotransfection of precursor miRNAs with reporter constructs containing the 3'-untranslated region of predicted target genes were used to validate targeting by identified miRNAs. The definition of the EOM microRNAome complements existing transcriptome and proteome data about the molecular makeup of EOM and provides further insight into regulation of muscle genes. These data will also help to further explain the unique EOM muscle allotype and its differential sensitivity to diseases such as Duchenne muscular dystrophy and may assist in development of therapeutic strategies.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.5
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available