4.5 Article

Expression of genes involved in excitatory neurotransmission in anoxic crucian carp (Carassius carassius) brain

Journal

PHYSIOLOGICAL GENOMICS
Volume 35, Issue 1, Pages 5-17

Publisher

AMER PHYSIOLOGICAL SOC
DOI: 10.1152/physiolgenomics.90221.2008

Keywords

N-methyl-D-aspartate/3-hydroxy-5-methyl-4-isoxazole propionate receptors; voltage-gated ion channels; glutamate transporter; anoxia; external RNA control

Funding

  1. Research Council of Norway

Ask authors/readers for more resources

Ellefsen S, Sandvik GK, Larsen HK, Stenslokken K-O, Hov DA, Kristensen TA, Nilsson GE. Expression of genes involved in excitatory neurotransmission in anoxic crucian carp (Carassius carassius) brain. Physiol Genomics 35: 5-17, 2008. First published July 1, 2008; doi: 10.1152/physiolgenomics.90221.2008.-The crucian carp, Carassius carassius, survives months without oxygen. During anoxia it needs to keep energy expenditure low, particularly in the brain, with its high rate of ATP use related to neuronal activity. This could be accomplished by reducing neuronal excitability through altered expression of genes involved in excitatory neurotransmission. Through cloning and the use of a recently developed real-time RT-PCR approach, with an external RNA control for normalization, we investigated the effect of 1 and 7 days of anoxia (12 degrees C) on the expression of 29 genes, including 8 3-hydroxy-5-methyl-4-isoxazole propionate (AMPA) receptor subunits, 6 N-methyl-D-aspartate (NMDA) receptor subunits, 7 voltage-gated sodium and calcium channels, 4 glutamate transporters, and 4 genes involved in NMDA receptor-mediated neuroplasticity. The subunits of the majority of the gene families had expression profiles similar to those observed in the mammalian brain and showed remarkably stable expression during anoxia. This suggests that the genes may have similar functions in crucian carp and mammals, and that the excitatory abilities of the crucian carp brain are retained during anoxia. Although the data generally argue against profound neural depression (channel arrest), NMDA receptor subunit (NR) expression showed features that could mediate reduced neural excitability. Primarily, the NR2 subunit expression, which was dominated by NR2B and NR2D, resembled that seen in hypoxia-tolerant neonatal rats, and decreased anoxic expression of NR1, NR2C, and NR3A indicated reduced numbers of functional NMDA receptors. We also report the full-length sequence of crucian carp NR1 mRNA and a novel NR1 splice cassette introducing an N-glycosylation site into the extracellular S1S2 domain.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.5
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available