4.2 Article

Effects of Temperature Variation on Male Behavior and Mating Success in a Montane Beetle

Journal

PHYSIOLOGICAL AND BIOCHEMICAL ZOOLOGY
Volume 86, Issue 4, Pages 432-440

Publisher

UNIV CHICAGO PRESS
DOI: 10.1086/671462

Keywords

-

Funding

  1. National Science Foundation [0844404/06]
  2. Santa Clara University Research Grant
  3. Faculty Student Research Assistant Program Award
  4. Direct For Biological Sciences
  5. Division Of Environmental Biology [0844404] Funding Source: National Science Foundation
  6. Division Of Environmental Biology
  7. Direct For Biological Sciences [0844406] Funding Source: National Science Foundation

Ask authors/readers for more resources

Locomotion and mating ability are crucial for male reproductive success yet are energetically costly and susceptible to physiological stress. In the Sierra willow beetle Chrysomela aeneicollis, male mating success depends on locating and mating with as many females as possible. Variation at the glycolytic enzyme locus phosphoglucose isomerase (Pgi) is concordant with a latitudinal temperature gradient in these populations, with Pgi-1 frequent in the cooler north, Pgi-4 in the warmer south, and alleles 1 and 4 in relatively equal frequency in areas intermediate in geography and climate. Beetles experience elevated air temperatures during a mating season that causes differential physiological stress among Pgi genotypes, and running speeds of individuals homozygous for Pgi-4 are more tolerant of repeated thermal stress than individuals possessing Pgi-Here the importance of running behavior for male mating activity was examined, and differential effects of thermal stress among Pgi genotypes on male mating activity were measured. In nature, males run more than females, and nearly half of males mate or fight for a mate after running. In the laboratory, mating activity was positively correlated with running speed, and repeated mating did not reduce running speed or subsequent mating activity. Males homozygous for Pgi-4 mated longer and more frequently after heat treatment than 1-1 and 1-4 males. All heat-treated males had lower mating frequencies and higher heat shock protein expression than control males; however, mating frequency of recovering 4-4 males increased throughout mating trials, while treated 1-1 and 1-4 males remained low. These results suggest that effects of stress on mating activity differ between Pgi genotypes, implying a critical role for energy metabolism in organisms response to stressful temperatures.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.2
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available